SABROE FACTORY

Developments in High Temperature Heat Pumps

Johnson Controls

A DECEMBER OF THE PARTY OF THE

York, Frick & Sabroe, since 19th century

YORK Since 1874

First Frick Compressor, built in 1885

- Two 12 x 18 cylinders
- Ammonia
- 50 RPM
- Steam Engine Driven

Sabroe CO₂-compressor, No. 2, built in 1897

- Capacity of 15 kW at -10/+25°C
- 90 rpm
- For a Danish dairy from 1897 to 1940

The Cycle

Heat pump technology is defined as sustainable

Heat Pumps

BY JOHNSON CONTROLS

6

YORK

Johnson Controls Heat Pumps solutions overview

	Compressor Technology	Refrigerant
1	Scroll, recip, screw	R717, R134a, R410A
Ш	Recip, screw	R717, R134a
-111	Screw, centrifugal	R717, R245fa
IV	Centrifugal	R245fa
V	Centrifugal	R718

HeatPAC Recip

variable-speed drive **R717** (max. 48 kg charge) Hot water up to **70° C** Heating capacity up to 1200 kW at 40° C source

HeatPAC Screw

variable-speed drive R717

Hot water up to **90° C** Heating capacity up to 1600 kW at 40° C source

HeatPAC Custom

Two-stage cascade variable-speed drive **R717** Hot water up to 90° C with screw Hot water up to **70° C with recip** Heating capacity up to +3000 kW at 40° C source

What is a HeatPAC?

Heat from cooling tower/dry cooler principle

<u>Connect to cooling tower/dry cooler water side</u> Pro: Simple installation – shut down of refrigeration plant not necessary Cons: Not as efficient as direct suction – or cascade.

Heat from cooling tower/dry cooler principle

<u>Connect with cascade exchanger to refrigeration curcuit</u> **Pros:** Higher efficiency than water solution. No direct contact between circuits (oil). **Cons:** More complex installation. Requires cut-in on existing refrigeration curcuit

What can a system can look like?

Efficiency

Efficiency in an industrial process

Water	6,716.16	€/year
Chemicals	1,210.40	€/year
inspection	0.00	€/year
Saving on tower	7,926.56	€/year
Net Energy savings	33,115.28	€/year
Total savings	41,041.84	€/year
Aprox price	80,000	€
ROI	1.95	Year

Some examples

NL projects: Orbis Hospital, Sittard (2007) Seasonal thermal storage (ground) using Sabroe & YORK

Make:	1x Sabroe	1x YORK	1x YORK
Type:	Screw - PAC193S-R	Screw – YN	Centrifugal – YK-R
Refrigerant:	Ammonia	R134a	R134a
Heating capacity: Cooling side Tin/Tout: Heating side Tin/Tout: COP Heating:	1234 kW 14 / 6 °C 32.5/ 53 °C 4.6	1251 kW 14 / 6 ⁰C 32.5 / 53 ⁰C 4.1	
Cooling capacity:	1197 kW	1000 kW	1690 kW
Cooling side Tin/Tout:	18 / 10 °C	18 / 10 °C	18 / 10 °C
Heating side Tin/Tout:	27 / 35 °C	27 / 35 °C	26 / 34 °C
COP Cooling:	5.8	6.4	6.3

NL projects: District heating Delft (end 2012)

Heat recovery from cleaned waste/sewer water, AWZI Harnaschpolder.

JCI installed a factory assembled two-stage HeatPump based on Sabroe reciprocating compressors (Low stage: 1x SMC112E / High stage: 2x HPO28):

- Sink water inlet/outlet temp. +50 / +75° C
- Source water inlet/outlet temp. +8 / +4° C
- Heating capacity 1220 kW
- COP heat pump = 3.4
- Ammonia charge = 200 kg
- Performance guarantee by JCI

NL projects: T30 - Energy/water savings FrieslandCampina (startup 2014)

Production site:	Domo, Beilen, producing baby food ingredients / nutritions		
Heatpump capacity:	4 MW heatpump to produce hot water of 90 °C		
Heat source: from	Water around 45° C is available from production. It is removed milk by the Vacuum evaporation device before the air drying		
Heat sink (useful):	Pre-heating the fresh air flow inlet into the spray dryer device by using water of 90 °C		
Difficulties:	Systems performance window: complex interaction / disturbances on input (heat source) and output (heat sinks)		
FrieslandCampina iii	Performance: Sink water inlet/outlet temperature: Source water outlet temperatuer: Heating capacity, maximum: COP range heat pump: Ammonia charge:	45 / 90°C 12°C +/- 4.5 MW 3.0 up to 5.0 3x250 + 2x60 kg	

NL projects: T30 - Energy/water savings FrieslandCampina (startup 2014)

JCI branches are involved in:

Design / Engineering, JCI Dordrecht Netherlands

- Thermodynamics / hydraulics (optimized concepts)
- Review specifications, functional design control systems
- P&ID's, GA, construction & service manuals
- Project Management
- Supervision, startup & commissioning
- Service and after sales
- Assembly of heat exchanger- and pump skids (hydraulics according to FC welding specs)

Manufacturing Sabroe, Holme Denmark

Production & assembly of heatpumps

DESIGN

• End Of Line test; full load performance test

PROJECT MANAGEMENT

INSTALLATION

AFTER SALES SERVICE

REMOTE CONTROL

NL projects: T30 - Energy/water savings FrieslandCampina (2013)

JCI solution is based on standard 'blocks' (modular):

- ✓ 3x Sabroe HeatPAC157 with VSD (high temperature)
- ✓ 2x Sabroe ChillPAC112 (low temperature / chiller mode)
- \checkmark Pump units, heat exchangers
- ✓ Advanced control system (Siemens PLC)
- ✓ Safety systems

District heating Bræstrup

Conclusions

Heat pump technology is difined as being a sustainable technology

There are many sources and sink combinations possible

In industrial applications where you can use both the cooling and heat capacity the combined COP increases considerably

Recovering heat on the cooling water helps saving chemicals and water

Heat pumps enables recovery of heat and boosting supply temperature in remote parts of big district heating systems

With the modern district heating system with lower supply temperatures the losses are also reduced

References

SABRO

BY JOHNSON CONTROLS

Thank you for your attention

