

Renewable energy from organic waste - the biogas plant Stellinger Moor in Hamburg

BIOWERK Hamburg GmbH & Co. KG

General conditions

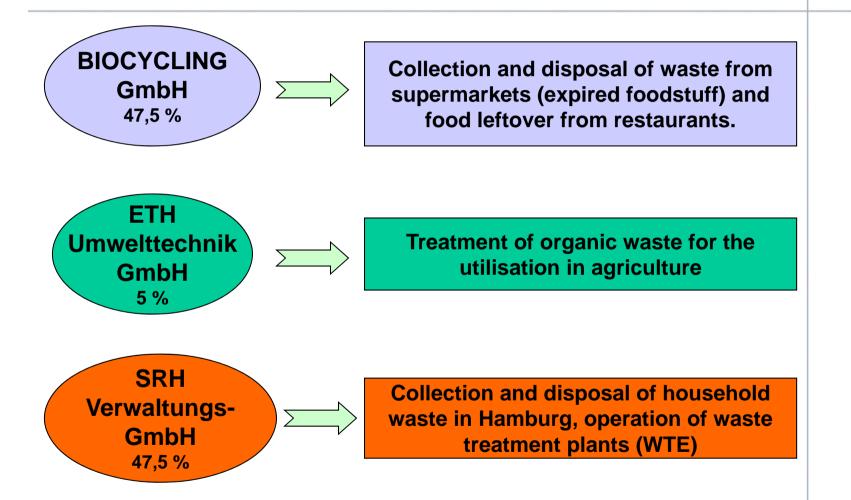
Legal conditions

 German law for the disposal of animal by-products since the 25.1.2004 → implementation of the EU regulations for Animal-By-Products EG Nr. 1069/2009 (until 2002 No. 1774/2002).

Changes on the waste market

- Utilisation of leftover as feedstock instead animal feed.
- The law leads to new disposal ways for animal byproducts (esp. class 2 and 3 material).

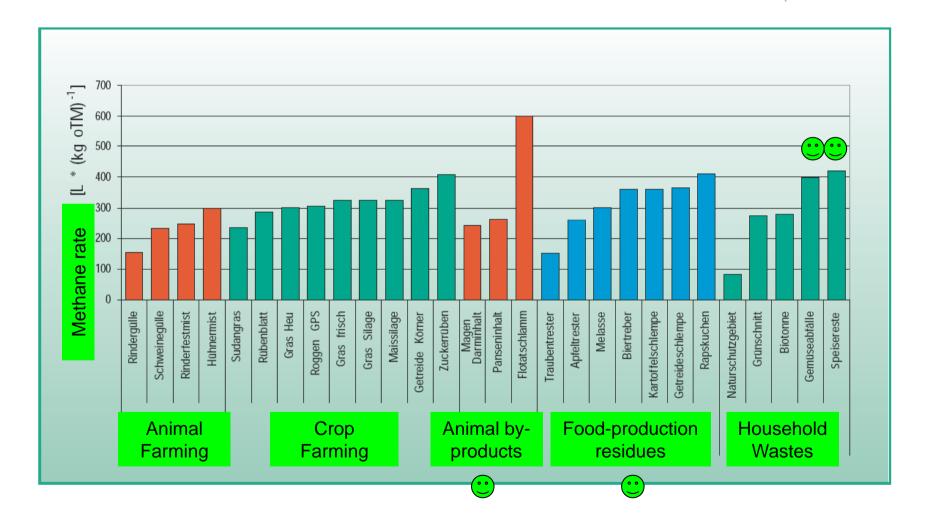
Utilising renewable energy


 Fixed income for electricity output from biogas plants (German Renewable Energy Law)

- Strategic aspects
 - Utilising legal changes on the waste market
 - Enhancing customer relationship
 - Creating a strategic alliance with new partners
- Economic aspects
 - Reducing the treatment costs for organic waste.
 - Creating additional income
 - Gaining a profit out of plant operation
- Start in April 2006

Partners and competence

Area view on the waste treatment **BIDWERK** facility



Characteristics of the location

- Approved for waste treatment facilities
- Existing location for waste treatment facilities since 1972
 - Waste transfer station, Pre-treatment, Incineration
- Short availability of suitable area
- Good infrastructure
 - Logistics (Motorway)
 - Technical support
 - Weighbridge
- Infrastructure for energy transfer (heat and electricity, in and out)

Typical input for biogas plants

Typical biogas composition

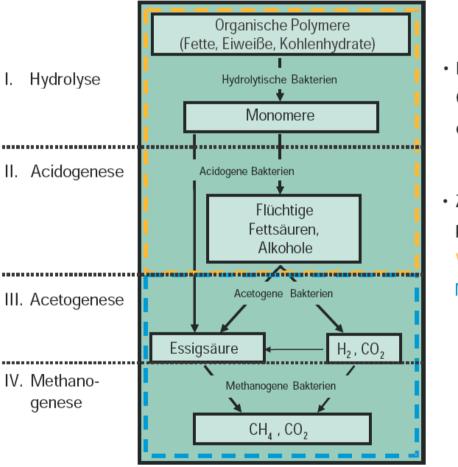
Tab. 1: Zusammensetzung von Biogas

Komponente	Methan (CH ₄)	Kohlendi- oxid (CO ₂)	Wasser (H ₂ O)	Stick- stoff (N ₂)	Wasser- stoff (H ₂)	Sauer- stoff (O ₂)	Schwefel- wasserstoff (H ₂ S)
Anteil am Biogas [%]	50-75	25-45	2-7	0-2	0-1	0-2	0-2

Principals of biogas production

Four stages of anaerobic digestion:

- 1. The first stage is <u>hydrolysis</u>, where complex organic molecules are broken down into simple sugars, amino acids, and fatty acids with the addition of hydroxyl groups.
- 2. The second stage is <u>acidogenesis</u> where a further breakdown into simpler molecules occurs, producing ammonia, carbon dioxide and hydrogen sulphide as by-products.
- 3. The third stage is <u>acetogenesis</u> where the simple molecules from acidogenesis are further digested to produce carbon dioxide, hydrogen and mainly acetic acid, although higher-molecular-weight organic acids (e.g., propionic, butyric, valeric) are also produced.


 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$

4. The fourth stage is <u>methanogenesis</u> where methane, carbon dioxide and water are produced.

acetic acid \rightarrow CH₄ + CO₂ + H₂O

Principals of biogas production

- Einstufiges Verfahren: Gesamte Prozesskette in einem Behälter
- Zweistufige Verfahren
 Räumliche Trennung von
 Vorversäuerung und
 Methanogenese

Abb. 2: Phasen der Biogasentstehung

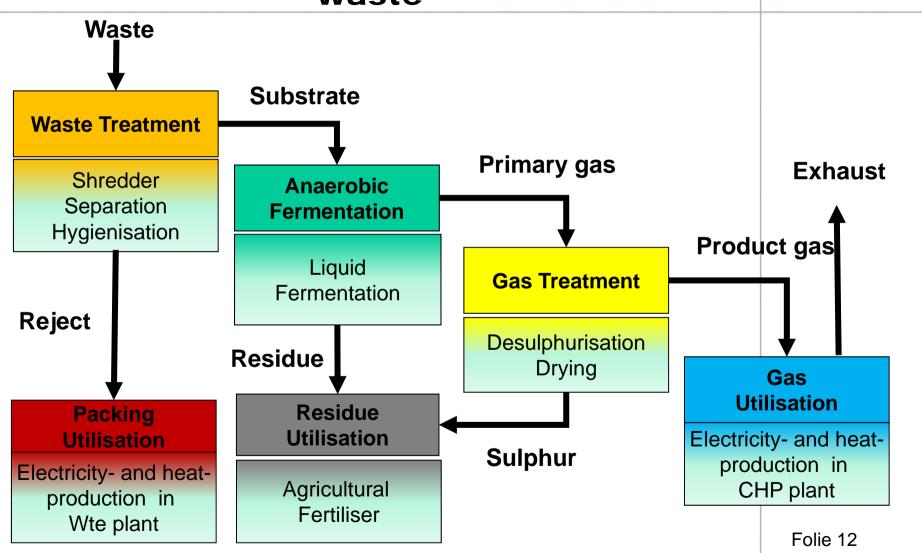
Examples of input material

Unpacked waste

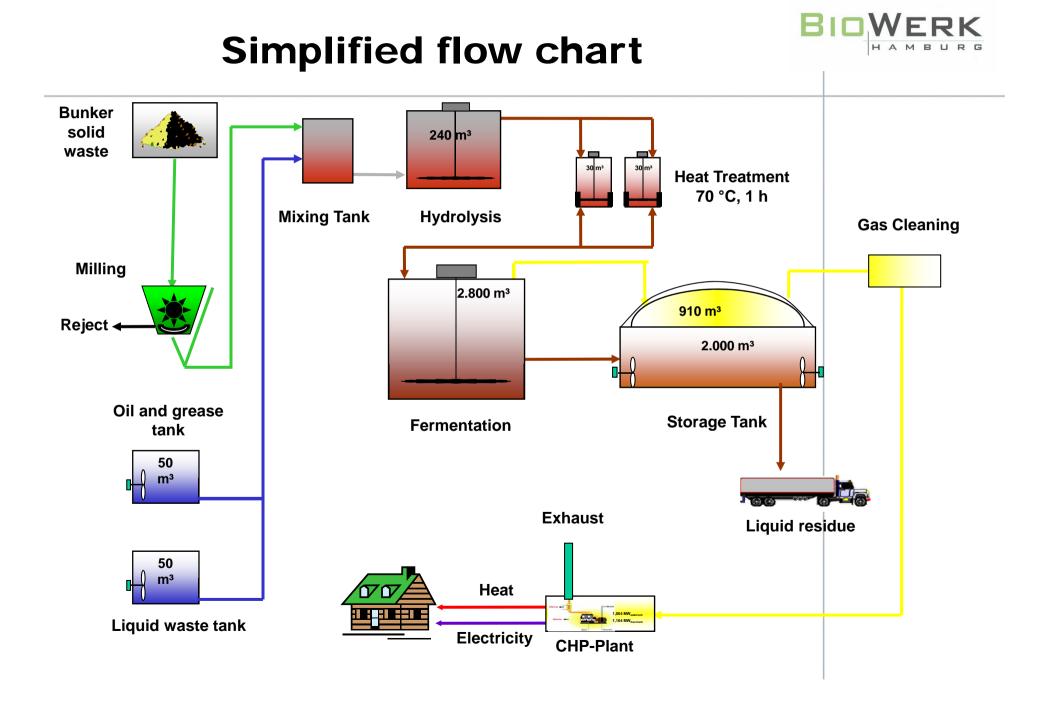
Food left over

Fruits and vegetables

Meat

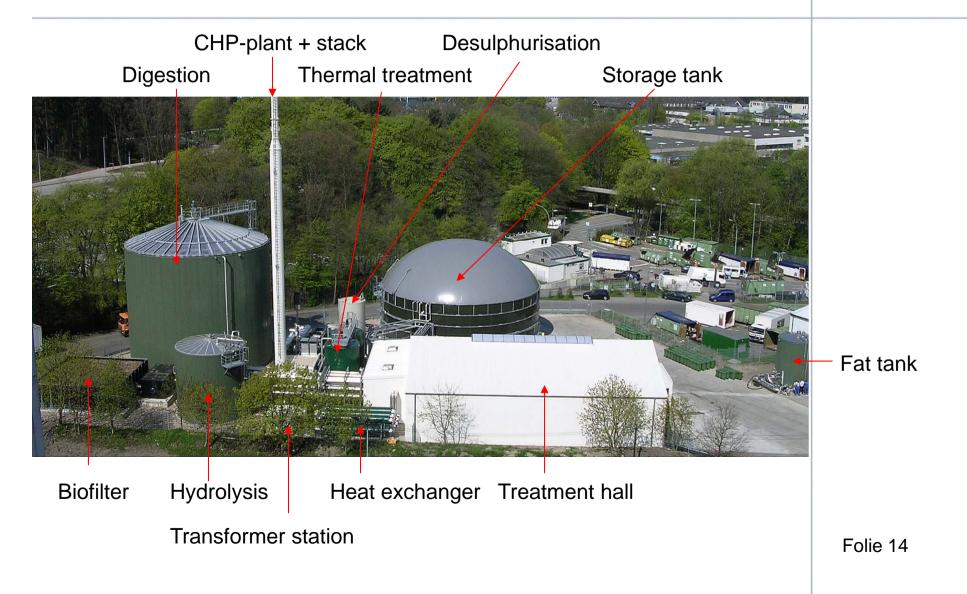

Packed waste

Bakery


Meat and Eggs

Yoghurt and milk products

Process chain biogas plant for organic waste



BIDWERK

Outside view of biogas plant

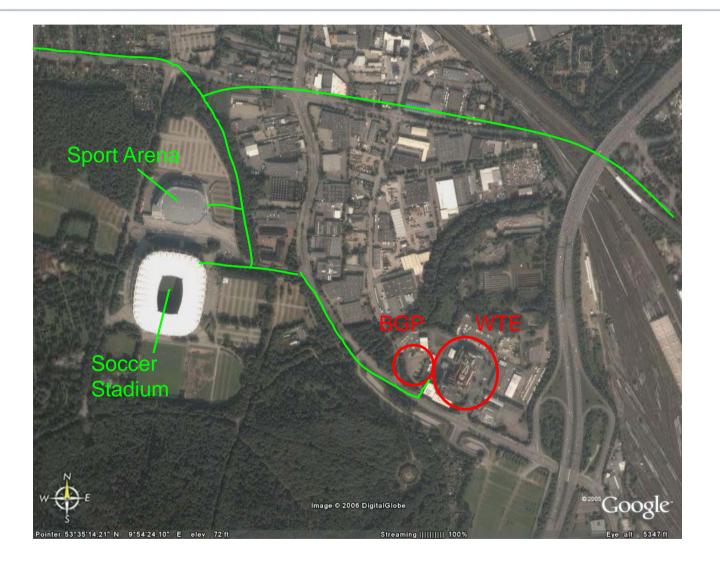
Organic slurry

Gas production

Packaging Residue

Energy production

- Gas production rate 330 m³/h
- Energy content Biogas ca. 6,5 kWh/m³
- Engine MWM Deutz
 12 Zylinder V
- 1.021 kW electrical power
- 1.070 kW thermal power
- Overall efficiency 82,6 %
- Ca. 6,7 Mio kWh/a
 Electricity
- Ca. 7,0 Mio kWh/a Heat



Design parameter biogas plant

•	Input	
	 Foodstuff an other waste solid 	18.927 Mg/a
	 Foodstuff and other waste liquid 	6.067 Mg/a
	Total input	24.994 Mg/a
•	Output	
	 Digestion Residue 	7.333 Mg
	 Digestion to Agriculture 	12.817 Mg/a
	 Packaging and Metals 	906 Mg/a
	Total output	21.056 Mg/a
•	Energy	
	 Electrical energy 	7,19 Mio kWh/a
	 Thermal energy 	6,82 Mio kWh/a

District heating

Quality of the Digestion Residue

RAL-GZ 245	Prüfzeugnis PZ-Nr.: 8561-1106-001			RAL-Gütesicherung Gärprodukt Chargenuntersuchung Seite 1 von 3 Anlage Stellinger Moor (BGK-Nr.: 8561)	
l	Gärprodu	ıkt flüssig	1	Charge: 8561 Gärprodukt flüssig Probenahme am 31.05.2011	
Rechtsbestimm	ungen:	Regelwerke:		ΓΔΙ	
☑ ^{™)} Bioabfallverordr	nung	RAL-Gütesicherung (RAL-G2 (Anerkennungsverfahren)	Z 24	(5) GÜTEZEICHEN	
Düngemittelverordnung Fremdüberwachung der BC		(Anerkennungs- verfahren		
Die Einhaltung der jeweiligen Norm wird mit einem Häckchen ausgewiesen.					

Quality of the Digestion Residue

Warendeklaration der RAL-Gütesicherung¹⁾

Kennzeichnung gemäß Düngemittelverordnung

Organischer NPK-Dünger flüssig 0,65-0,13-0,18 mit Spurennährstoffen unter Verwendung vorhtierischen Nebenprodukten, organischen Abfällen

0,65 % N Gesamtstickstoff

0,13 % P₂O₅ Gesamtphosphat 0,18 % K₂O Gesamtkaliumoxid 0,0007 % Zn Gesamtzink

Nettomasse und ggfl. Volumen: siehe Lieferschein

Inverkehrbringer:

Biowerk Hamburg GmbH & Co. KG Schnackenburgallee 100 22525 Hamburg

Ausgangsstoffe:

Tierische Nebenprodukte (Kategorie 3) (69%), Küchen- und Speiseabfälle. Nebenbestandteile: Fett und Fettrückstände.

Nebenbestandteile: 0,43 % N Ammoniumstickstoff 0,02 % S Schwefel 2,21 % Organische Substanz

Hinweise zur Lagerung:

Lagerung nur in geeigneten und zugelassenen Behältern/Anlagen unter Berücksichtigung anderer Rechtsbestimmungen. Vor der Entnahme ausreichend durchmischen.

Hinweise zur Anwendung:

Hinweise zur sachgerechten Anwendung siehe Anlage LW. Die Empfehlungen der amtlichen Beratung sind vorrangig zu berücksichtigen. Bei einer Aufbringung auf landwirtschaftlich genutzten Flächen sind die Anwendungs- und Mengenbeschränkungen aus abfallrechtlichen Vorschriften (AbfKlärV, BioAbfV) zu beachten.

Anwendungsvorgaben:

Bei Anwendung dieses Düngemittels sind die Sperrfristen der Düngeverordnung in den Wintermonaten zu beachten. Organisches Düngemittel unter Verwendung von tierischen Nebenprodukten - Zugang für Nutztiere zu den behandelten Flächen während eines Zeitraumes von 21 Tagen nach der Ausbringung verboten. Bei Lagerung, Transport und Ausbringung sind notwendige Vorkehrungen zu treffen, um die Aufnahme durch Nutztiere zu vermeiden.

Eigenschaften und Inhaltsstoffe

in der Frischmasse					
		kg/t	kg/m³		
Stickstoff gesamt (N)	6,53	6,53			
Stickstoff löslich (N)	4,31	4,31			
Stickstoff anrechenbar	(N) ²⁾	4,42	4,42		
Phosphat gesamt (P2O	₅)	1,35	1,35		
Kaliumoxid gesamt (K20	D)	1,85	1,85		
Magnesiumoxid ges.(M	gO)	0,09	0,09		
Basisch wirksame Stoff	e (CaO)	1,43	1,43		
pH-Wert Salzgehalt Organische Substanz Humus-C		22,	8 3 g/l 2 kg/t 4 kg/t		
Hygieneanforderungen eingehalten Frei von keimfähigen Samen und austriebfähigen Pflanzenteilen					
Rohdichte Trockenmasse			0 kg/m³ ,4 %		
Düngewert ³⁾	7,07 €/t	7,07	€/m³		
Humuswert 4)	0,66 €/t		€/m³		
Stickstoff aus Wirtschaftsdünger tierischer Herkunft 0,0 kg/t FM					

Das Erzeugnis unterliegt der RAL-Gütesicherung (RAL-GZ 245). Dieses Zeugnis wurde elektronisch erstellt. Es gilt ohne Unterschrift.

Quality of the Digestion Residue

Tabelle 2: Kalkulationswerte für Aufwandmengen

(hier: Orientierung am Bedarf an N¹⁾, Angaben gerundet)

N ¹⁾ kg/ha		Damit verbundene Mengen an			
	Aufwand- menge	P ₂ O ₅	K ₂ O	CaO	
	menge	(kg/ha)	(kg/ha)	(kg/ha)	
10	2,3 t/ha 2,3 m³/ha	3,1	4,2	3,2	
30	6,8 t/ha 6,8 m³/ha	9,2	13	9,71	
50	11 kg/ha 11 m³/ha	15	21	16	

Die Tabelle weist aus, welche Menge Gärprodukt erforderlich ist, um 10, 30 bzw. 50 kg N¹⁾ auszubringen. Spalten 3 bis 6 zeigen damit verbundene Mengen an anderen Pflanzennährstoffen.

Schwermetalle

Blei (Pb)	4,66 mg/kg TM
Cadmium (Cd)	0,62 mg/kg TM
Chrom (Cr)	11,4 mg/kg TM
Kupfer (Cu)	43,5 mg/kg TM
Nickel (Ni)	13,2 mg/kg TM
Quecksilber (Hg)	0,17 mg/kg TM
Zink (Zn)	223 mg/kg TM

Thank you for your interest !

BID WERK

Schnackenburgallee 100 22525 Hamburg Tel: 040/2576-3091 Fax: 040/2576-3090 E-mail: biowerk@srhh.de Internet: http://www.biowerk-hh.de/